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Final Report: Issues in Scaling up Machine
Learning

Michael J. Pazzani

March 13, 1997

This grant has supported one graduate student reseracher under the direction
of Dr. Michael J. Pazzani invstigating issues in improving the accuracy of
machine learning systems. The classic machine learning paradigm for prediction
has been to learn a set of decision structures or models from a “training set”
and select one for prediction on unsecn “test data”. Rather than sclect a single
model from the sct, the focus of this project's rescarch has been to combine the

In the realm of regression, the task is to predict a single continuous value
for an cxample, x. The tnajority of research in this area has focused on simple
lincar combinations of the learned models. For example, a combined estimate,
f(x), can be derived by assigning weights, o, to each of the N learned models,

i(x), as follows:

N
fix) = > aifi(x).

i=1

The naturc of these weights mnay span from being highly rcgularized to com-
Pletely unconstrained. A set of weights is considered highly regularized if they
are all positve, they sum to one, or they are uniform. Completely unconstri-
aned wcights have no restrictions, and may be derived by methods like ordinary
least squares regression, The degree of regularization required depends on the
particular regression problem.

The project has developed a technique called PCR* [Merz and Pazzani, 1997,
Merz and Pazzani, 1996] which automatically estimates the appropriate degrce
of regularization for a given data set. The basic idea is to yse the cigen structure
of the modcls’ predictions on the training data to derive a continuum of pos-
sible weight sets ranging from highly regularized to completcly unconstrained.
Cross-validation is used to estimate which weight set is most appropriate. An



empirical cvaluation of PCR* indicates that it indeed tends to choose the ap-
propriate degree of regularization for a collection of data sets.

The current focus of the project’s latests rescarch is in the area of classifica-
tion. Here, each learncd model attempts to assign a class label to cach example.
Combining methods for classification typically assign weights to each learned
model and take the “weighted majority”, i.c.,

N
f(x) = argmax 3 aill fix) = cf

i=]

where Y is the set of possible classes, and lla = bl is one of a is equal to &, and
zero otherwise.

Initial research in this arca [Merz, 1995] has indicatcd that the naive ap-
proach of taking the most frequent class (i.e., using uniform weights) is quite
cffcctive. However, when the learned models tend to make uncorrelated CIrors,
more elasborate weighting methods may do better. In an attcrapt to explore
weight sets analogous to those found in the regression task, two methods are
currently under development.

The first is a direct extension of PCR* where each class is considered a
scparate (0/1) regression problem. The i — th model's prediction for the j — th
class would be f;;(x). A zero for f;;(x) would indicate that example x is not
predicted to be a member of class 7, and a one would idicate the opposite. One
weight sct would be derived for cach of the J classes as follows:

N
fix) =Y oy fig(x).

=]

In deriving the combined estimate, f(x), a slightly more elaborate weighted
majority scheme than given above is used. In this casc, each learned model
has a particular weight for each possible class. A preliminary evaluation of
this extension of PCR* indicates that it also does a good job of choosing the
appropriate weight set for g given data sct.

The second approach being explored is based on a statistical procedure
known as “correspondence analysis”. Here the examples and the learned mod-
cls are scaled into the same geometric space. In this representation, relation-
ships between examples and learned models may be exploited so that a learned
model’s weight may be increased for examples on which it is likely to be accu-
rate.
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